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At the 1992 Blue Planet Prize awards ceremony,
the opening slide presentation highlighted the
beauty of our blue planet with images of the
Earth seen from outer space. Each year, the
awards ceremony features a slide presentation on
a different theme.




Prime Minister Kiichi Miyazawa gives a congratulatory speech at the
opening ceremony.

Hideaki

As the chaiman of the
Presentation Committee,
Dr. Saburo Okita reports on
the selection process.

Yamashita,
chairman of the
Asahi Glass
Foundation,
delivers the
opening
address.
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Asahi Glass Foundation Chairman Hideaki
Yamashita shakes hands with Michael
Armacost, ambassador of the United States
of America to Japan. Directly behind Mr.
Armacost is Sir John Boyd, Her Britannic
Majesty’s ambassador.

On the day following the awards ceremony, a symposium was held
on the topic of creating a new civilization in harmony with nautre.
Symposium panelists, from left; Keiko Nakamura, Professor,

School of Human Sciences, Waseda University; Takamitsu Sawa,

head of Kyoto University’s Institute of Economic Research; Seated with other members of the audi-
Symposium Coordinator Hirotada Hirose, Professor, College of ence, the laureates participate in a panel
Arts and Sciences, Tokyo Women’s Christian University; discussion that followed the symposium.

Kenzaburo Oe, author; and Hiroyuki Ishi, Senior Staff Editor, Asahi
Shimbun Publishing Company.



Profile

Dr. Syukuro Manabe

Senior Scientist, Geophysical Fluid Dynamics Laboratory, National Oceanic and Atmospheric
Administration, Princeton, New Jersey

Education and Academic and Professional Activities

1953 Bachelor of Science, University of Tokyo

1955  Master of Science, University of Tokyo

1958  Doctor of Science, University of Tokyo '

1958 Research Meteorologist, General Circulation Research Section, U.S. Weather
Bureau, Washington, D.C.

1963—  Senior Scientist, Geophysical Fluid Dynamics Laboratory at the National Oceanic
and Atmospheric Administration, Princeton, New Jersey

1966  Fujiwara Award, Japan Meteorological Society

1967  Mesinger Award, American Meteorological Society

1968~  Lecturer with rank of professor, Princeton University

1970  Gold Medal Award, Department of Commerce

1977 2nd Half-Century Award, American Meteorological Society

1979 Member of the Senior Executive Service, U.S.A., Geophysical Fluid Dynamics
Laboratory, National Oceanic and Atmospheric Administration, Princeton, New
Jersey

1981-87 World Meteorological Organization/International Council of Scientific Union/United
Nations Environmental Program, Joint Scientific Committee

1989  Meritorious Executive Award, President of the U.S.A.

1989-90 Intergovernmental Panel on Climate Change, Lead Author for Group I Report

‘ (Scientific Assessment)

1990 Elected Member, National Academy of Sciences

1992  Blue Planet Prize, Asahi Glass Foundation

1993 Revelle Medal, American Geophysical Union

1994 Elected Foreign Member, Academia Europaca

1995  Elected Foreign Member, Royal Society of Canada

1995  Asahi Prize, Asahi Shimbun Cultural Foundation

Dr. Syukuro Manabe, a naturalized U.S. citizen, was born in Ehime Prefecture, Japan, in 1931.
Dr. Manabe received a doctor of science degree from the University of Tokyo in 1958, when
he was invited to join a research group of the U.S. Weather Bureau as a research meteorolo-
gist. Dr. Manabe has since then continued to work at the same U.S. institution, which is cur-
rently called the Geophysical Fluid Dynamlcs Laboratory of the National Oceanic and
Atmospheric Administration.



Dr. Manabe is a leader in developing computer models for the study of climate. Using
a one-dimensional model of climate which incorporates convective as well as radiative trans-
fer of heat in the atmosphere, he successfully elucidated the role of greenhouse gases (e.g. car-
bon dioxide, water vapor and ozone) in maintaining the vertical thermal structure of the atmos-
phere. He and his collaborators made pioneering contributions to the projection of global
warming through the imaginative use of the one-dimensional, radiative-convective model
mentioned above and three-dimensional, general circulation models of the coupled ocean-
atmosphere system. Their contributions had a profound impact upon the assessments of cli-
mate change which were conducted by the Intergovernmental Panel on Climate Change in
1990 and 1995. The scope of his modeling activity is very extensive, covering not only the pre-
sent and future climates, but also the climate of the geological past. Dr. Manabe has played a
leading role in the emergence of the modeling approach as one of the most promising avenues
for the study of climate. '



Essay
Model Assessment of Observed Global Warming Trend

Dr. Syukuro Manabe

April 1997

Prologue

When we discuss global warming, one of the questions which we ask frequently is, “Have we
detected global warming?” In this essay, I would like to answer this question using a general
circulation model of the coupled ocean-atmosphere system, which will hereinafter be called
the “coupled model” for simplicity. ) _

Since the basic structure of the coupled model was described in my commemorative lec-
ture of the 1992 Blue Planet Prize contained in this volume, I shall not repeat it here. I would
like to note, however, that the coupled model has become a very valuable tool for the study of
climate, successfully simulating both its interannual and decadal variabilities (Manabe and
Stouffer, 1996). '

Figure 1 illustrates the time series of global averaged, annual mean surface air temper-
ature (SAT) that Jones and Wigley (1991) constructed, based upon past observations of SAT.
In addition to the low frequency fluctuations of global mean temperature at interannual to
decadal time scales, this time series exhibits the global warming trend that began around the
turn of this century. In this essay, I would like to discuss whether the sustained warming trend
of global mean temperature during the 20th century is induced by thermal forcing, as a result
of increasing greenhouse gases, or generated internally through the interaction among the
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Figure 1 Time series of
globally averaged, annual
mean SAT anomalies (i.e.,
the departures from the
1880-1920 base-period . .
means) obtained by Jones -0.?850 1900 1950 2000
and Wigley (1991). : Years
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Figure 2 Time series of globally averaged, annual mean SAT anomaly from the long-term mean.

(a) 1,000-year time series from the coupled ocean-atmosphere model

(b) 110-year time series (1881-1990) of observed, globally averaged temperature.

The straight lines through both time series are such that the sum of squared distance between the time series and
the straight line is minimized.

atmosphere, oceans, and land surface.

Simulated natural variability

In order to study the natural variability of climate internally generated in the coupled system,
we conducted a 1,000-year integration of the coupled model at the Geophysical Fluid
Dynamics Laboratory of NOAA. The 1,000-year time series of global mean SAT anomaly
obtained from this time integration is illustrated in Fig. 2a and is compared to the time series
of observed anomaly between 1881 and 1990 (Fig. 2b).

Stouffer et al. (1994) assessed the probability of finding in the simulated 1,000-year
time series a century-scale warming trend such as that observed between 1881 and 1990 (Fig.
2b). They calculated the probability for linear trends exceeding 0.5 °C/century, which is the .
observed trend between 1881 and 1990 (Jones and Wigley, 1991). It was found that, for inter-
vals longer than ~60 years, there are no trends as large as 0.5 °C/century. In other words, the
observed warming trend of 0.5 °C/century is not found in the coupled model time series for any
intervals longer than ~60 years. If our model behavior is realistic, it is not likely that the ocean-
atmosphere-land interaction in the coupled model could randomly generate a substantial long-
term warming trend such as that observed since the end of the last century.

~ To examine spectrally how realistic is the time series of global mean SAT anomaly
shown in Fig. 2, the power spectrum of detrended and globally averaged, monthly mean SAT
anomaly from the 1,000-year integration of the coupled model is compared in Fig. 3 with the
spectrum of detrended, observed SAT compiled by Jones and Wigley (1991). (The detrending
of the observed time series reduces the contributions from the fluctuations on time scales
longer than 100 years.) This comparison indicates that, at multidecal and shorter time scales,
the coupled model simulates the observed spectrum reasonably well.!

However, the coupled model fails to simulate any large warming trend of centennial
time scale such as that observed during this century. This failure suggests that the observed



warming trend was not generated internally in the coupled system, but was thermally forced.

Thermally forced response _

As noted in my commemorative lecture of 1992, the coupled model overestimates the warm-
ing trend of the 20th century, if it were forced by greenhouse gases alone. Recently, Mitchell
etal. (1995) of the U.K. Meteorological Office obtained a more realistic trend by forcing their
coupled model with the effect of sulfate aerosols in addition to increasing greenhouse gases.
At the Geophysical Fluid Dynamics Laboratory, we have conducted a similar experiment
using the coupled model. The temporal variation of sulfate aerosols and the COz-equivalent
concentration of greenhouse gases used for our experiment are practically identical to those
used by Mitchell et al.? Starting from the initial condition, which is a snapshot of the 1,000-
year control integration described in the previous section, Haywood et al. (1997) performed the
integration of the coupled model over the period from 1765 to 2065 with thermal forcing of
combined greenhouse gases and aerosols, as described above.

Figure 4 illustrates the temporal variation of the globally averaged, annual mean SAT
anomalies of the coupled model from 1850 to 2000. For comparison, the time series of
observed, global mean SAT anomaly compiled by Jones and Wigley (1991) is added to the
same figure. This figure indicates that the simulated warming trend during the past 100 years
is remarkably similar to the observed trend. The model also reproduces the magnitude of the
observed decadal variability reasonably well, as discussed in the previous section.

In view of the large uncertainty in the estimation of the atmospheric loading of various
aerosols and their radiative effect, the close agreement of the simulated and observed warm-
ing trends during this century could be fortuitous. For example, many radiative forcings other
than sulfate aerosols are neglected in this experiment, including those due to ozone changes,
other anthropogenic aerosols, indirect aerosol effects on cloud brightness, and changes in the
solar irradiance. Furthermore, the climatic response to these forcings is also uncertain. It
appears significant, however, that we are unable to simulate the observed warming during the
last 100 years unless the combined effect of increasing greenhouse gases and sulfate aerosols
is incorporated.

Concluding remarks

Based upon the comparison between the observed and simulated variability of global mean
SAT, we suggest that the sustained warming trend of this century was not generated internally
through the interaction among the atmosphere, oceans, and land surface. Instead, it appears to
have been forced by natural and anthropogenic thermal forcing such as that resulting from the

I'The coupled model spectrum is inside the 95% confidence interval of the observed system, though the similarity
between the two spectra does not hold too well at the time scale of 2-7 years. Because of its course computational
resolution, the coupled model underestimates the amplitude of the Southern Oscillation with this time scale (see
Knutson and Manabe, 1994; Knutson et al., 1997).

2 The CO»- -equivalent radiative forcing of greenhouse gases from 1765 to 1900 was based upon the 1990 report of
the Intergovernmental Panel on Climate Change (IPCC, 1990). After 1990, it was assumed to increase by 1% per
year, following approximately the best guess IPCC 1992a scenario (IPCC, 1992). The direct effect of sulfate
aerosols was added by increasing surface albedo at each grid box, yielding the 1990 global mean thermal forcing
of ~-0.6 W/m?.



increase of solar irradiance (Lean, 1991) and greenhouse gases in the atmosphere. A similar
inference could also be drawn from analysis of the time series of global mean SAT obtained
from the coupled model developed at the Hadley Centre of the U.K. Meteorological Office
(Mitchell et al., 1995).

In addition to analyzing the time series of global mean SAT, other approaches have
been employed for the detection of global warming. By comparing the pattern of the observed
SAT models, Hegerl et al. (1996) concluded that statistically significant, externally induced
warming has been observed. Saner et al. (1996) noted that the observed pattern of temperature
change in the free atmosphere from 1963 to 1997 is similar to those obtained by climate mod-
els which incorporate various combinations of changes in carbon dioxide, anthropogenic sul-
fate aerosols and stratospheric ozone concentrations. The conclusions of these studies are
clearly in support of the recent statement of the IPCC (IPCC, 1996): “The balance of evidence
suggests a discernible human influence on global climate.”
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Figure 3 Power spectra of detrended
globally averaged, monthly mean SAT
anomaly. The thick solid line represents
the spectrum of the coupled model time
series shown in Fig. 2a, and the thin solid
line represents the spectrum of the
observed time series (obtained by use of
the data compiled by Jones and Wigley
(1991)). The spectra are the smoothed
Fourier transform of autocovariance
function using a Tukey window with a
maximum of 2,400 lags (200 years) for
the models and 480 lags (40 years) for
the observed. They are smoothed by
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Lecture
Future Projection of Global Warming by Climate
Models

Dr. Syukuro Manabe

This lecture describes briefly my involvement in the development of climate models during the
last 35 years and the application of these models to the study of global warming. The lecture
concludes with a discussion of the strategy towards the reliable projection of the long-term
change of climate in the future. '

My involvement in the modeling study of climate began in the fall of 1958 when Dr.
Joseph Smagorinsky of the U.S. Weather Bureau invited me to join his group and participate
ina very ambitious project for the development of comprehensive models of climate. My ini-
tial assignment was the incorporation of the radiative effect of various greenhouse gases (e.g.,
water vapor, carbon dioxide and ozone) into a three-dimensional general circulation model of
the atmosphere. As the first step towards this goal, we constructed a one-dimensional radiative-
convective model of the atmosphere which included the effects not only of radiative transfer
but also the convective restoration of the neutral, vertical temperature gradient due to cumulus
convection and synoptical scale disturbances (Manabe and Strickler, 1964; Manabe and
Wetherald, 1967).

Figure 1 illustrates the vertical distribution of the global mean temperature which is in
radiative-convective equilibrium. The equilibrium state was approached asymptotically
through a long-term integration of the radiative-convective model mentioned above. The heat
balance of the convective troposphere is maintained between the convective heating and net
radiative cooling, whereas the stably stratified stratosphere aloft is in radiative equilibrium
without convective heating. The state of radiative equilibrium obtained compares favorably
with the U.S. standard atmosphere which is added to Figure 1 for comparison. :

To evaluate the response of the model atmosphere to changes in atmospheric CO2 con-
centration, numerical experiments were performed with the radiative-convective model of the
atmosphere. Figure 2 illustrates the vertical distribution of the simulated, global mean thermal
equilibrium temperature of the atmosphere for the normal, half the normal, and twice the nor-
mal concentration of CO». In response to the doubling of atmospheric CO; from the normal to
twice the normal concentration, for example, the equilibrium surface temperature of the model
increases by about 2.3 °C. The figure also reveals that the magnitude of the cooling resulting
from the halving of the CO» concentration (from the normal to half the normal concentration)
is approximately equal to the magnitude of the warming from the doubling of CO2 concentra-
tion.

The physical mechanism of the greenhouse effect may be understood by realizing that
greenhouse gases such as CO2 and H20 can absorb and emit terrestrial radiation but absorb a
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Figure 1. Dashed line shows the vertical distribution of

global mean temperature of the atmosphere in radia- Figure 2. Vertical distribution of temperature in radia-
tive-convective equilibrium. (The prescribed cloudiness  tive-convective equilibrium for various values of atmos-
is indicated on the right-hand side of the figure.) The  pheric COz2 concentration, i.e., 150, 300, and 600 ppm
solid line shows the U.S. standard atmosphere. From by volume. From Manabe and Wetherald (1967).
Manabe and Strickler (1964).

relatively small fraction of solar radiation. In the mid-troposphere, these gases absorb and re-
emit a major fraction of the upward terrestrial radiation emitted from the Earth’s surface and
the lower troposphere. Thus, the effective source of emission of the outgoing terrestrial radia-
tion at the top of the atmosphere is located in the mid-troposphere rather than the Earth’s sur-
face. On the other hand, in an atmosphere without greenhouse gases, the source of emission
would be confined to the Earth’s surface which is warmer than the mid-troposphete. In order
to maintain the compensation between the net incoming solar radiation and outgoing terrestrial
radiation at the top of the atmosphere, it is therefore necessary that the thermal equilibrium -
temperature of the troposphere with greenhouse gases be much higher than that of the green-
house gas-free atmosphere. Thus, greenhouse gases help maintain the surface temperature of
our planet at a level which sustains the biosphere. These discussions also imply that an increase
in the atmospheric concentration of COz2 raises the altitude of the effective source of emission
and reduces the outgoing terrestrial radiation, thereby contributing to the global warming of the
combined surface-troposphere system.

It is expected that, associated with global warming, the absolute humidity in the model
troposphere increases because of the dependence of saturation vapor pressure upon air tem-
perature. Since water vapor is a greenhouse gas which absorbs and emits terrestrial radiation
very effectively, the increase in the absolute humidity of air raises the altitude of the effective
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Figure 3. Box diagram

Coupled Ocean-Atmosphere-Land Model which illustrates the struc-
’ ’ ture of the coupled ocean-
Atmosphere atmosphere model.
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source of outgoing terrestrial radiation. Thus, the temperature of the model troposphere
increases further, maintaining the radiation balance of the surface-atmosphere system as a
whole. In addition, the increase of absolute humidity increases the fraction of solar radiation
absorbed by the model atmosphere, thereby decreasing the planetary albedo and enhancing the
COz-induced warming. In short, water vapor plays an important role in enhancing the CO»-
induced warming of the atmosphere. Using the radiative-convective model, we succeeded for
the first time to correctly evaluate the positive feedback effect of water vapor (Manabe and
Wetherald, 1967).

The development of the simple radiative-convective model described above was an
important step towards the construction of the three-dimensional, general circulation model
(GCM) of the atmosphelre.1 The success of the GCM in the 1960s and early 1970s in simulat-
ing many basic features of atmospheric circulation and climate (e.g., Manabe and Holloway,
1975) encouraged us to use the GCM for evaluating global warming (Manabe and Wetherald,
1975; Manabe and Stouffer, 1980).

One of the important factors which control the transient response of climate to a green—
house forcing is the oceans. If the heat trapped by increasing greenhouse gases is stored in the
upper layer of the oceans, or is sequestered into the deeper ocean through vertical mixing, it is
possible that global warming could be delayed significantly. Thus, oceans can affect substan-
tially the rate and distribution of global warming. This was one of the important reasons why
we started developing the so-called coupled ocean-atmosphere models in the 1960s (Manabe
and Bryan, 1969).

I would like to describe here the results from a recent numerical experiment which

! For more detailed discussion on early developments in the model study of the greenhouse effect, see my recently
publlshed review paper :

Manabe, S. “Early Development in the Study of Global Warming: The Emergence of Climate Models ” Ambio
- (1997, in press).
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Figure 4. The geographical
distribution of the changes in
surface air temperature of
the coupled ocean-atmos-
phere model in response to
the 1%/year increase (com-
pounded) of atmospheric
COa. It represents the warm-
ing averaged over the 60th-
80th year period when the
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explored the transient response of a coupled ocean-atmosphere model to a gradual increase of
atmospheric CO2 (Stouffer et al., 1989; Manabe et al., 1991).2 The coupled model consists of
an atmospheric GCM, an oceanic GCM and a simple model of the continental surface that
involves the budget of heat and water (Figure 3). It is a global model with realistic geography.
The atmospheric component of the model has seasonal variation of insolation, and predicted
cloud cover which depends only on relative humidity. It has nine vertical finite difference lev-
els. To improve the accuracy of hydrodynamic calculations, the horizontal distributions of
variables specified at grid points are represented by spherical harmonics at each time step. The
oceanic GCM uses a finite difference technique and has a regular grid system with 4.5° X
3.75° (latitude x longitude) spacing and 12 vertical finite difference levels. The atmospheric
and oceanic components of the model interact with each other continuously through the
exchange of heat, water, and momentum, as illustrated by Figure 3.

The rate of increase in atmospheric CO2 concentration chosen for this transient response
experiment is 1%/year. This rate is approximately equal to the rate at which the total CO2-
equivalent concentration of all greenhouse gases (except water vapor) is increasing currently.
Figure 4 illustrates the geographical distribution of the increase in annual mean surface air tem-
perature when the atmospheric concentration of COz is doubled (i.e., 70th year of the experi-
ment). The doubling of the CO2-equivalent concentration of greenhouse gases from the prein-
dustrial level may realized around the middle of next century (IPCC, 1990). The figure
indicates that the simulated response of surface air temperature is slow over the northern North
Atlantic and the Circumpolar Ocean of the Southern Hemisphere, where the vertical mixing
of the heat trapped by the increased greenhouse gas penetrates very deeply. However, in most
of the Northern Hemisphere and low latitudes of the Southern Hemisphere, the distribution of '
the change in surface air temperature is very similar to the results obtained earlier without the
delaying effect of the oceans. For example, surface air temperature increases with increasing
latitudes in the Northern Hemisphere and is larger over continents than oceans. The increase
is at a maximum over the Arctic Ocean and its surroundings in the early winter and is mini-

2 For more recent overview of climate change studies by coupled atmosphere models, see the review paper by
Manabe et al. (1994).

Manabe, S., R.J Stouffer, and M.J. Spelman. “Response of a Coupled Ocean-Atmosphere Model to Increasing
Atmospheric Carbon Dioxide.” Ambio, 23 (1994), 44—49.
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Figure 5. Time series of
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mum in summer. The enhanced heat conduction through thinner sea ice is responsible for the
early winter maximum, whereas sea ice prevents the temperature of the oceanic mixed layer
and the overlying air to rise substantially above the freezing point in summer, and is responsi-
ble for the summer minimum in warming. Although the Arctic sea ice loses its thickness in
winter as mentioned above, it becomes less extensive as well as thinner in summer.

The increase of a greenhouse gas affects not only the thermal structure of the coupled
system but also the hydrologic cycle. For example, the global mean rates of both precipitation
and evaporation increase (Manabe and Wetherald, 1975). Because of the increase in the pole-
ward, atmospheric transport of water vapor associated with the increase in the moisture con-
tent of air, the increase of precipitation rate in high latitudes far exceeds that of evaporation

‘rate, markedly increasing runoff and reducing the surface salinity in the Arctic and surround-
ing oceans. This capping of the oceanic surface by relatively fresh water reduces the convec-
tive activity in high latitudes and weakens the thermohaline circulation which advects warm
and saline surface water northwards, further reducing the greenhouse warming in the northern
North Atlantic and surrounding regions (Manabe et al., 1991). It has also been noted that the
soil moisture is reduced in summer over extensive mid-continental regions of both the Eurasian
and North American continents of the model (Manabe et al., 1981). Thus, it is likely that sum-
mer droughts may become more frequent as the greenhouse warming intensifies.

( Figure 5 illustrates the temporal variation of the globally averaged, annual mean surface
air temperature anomaly compiled by Jones and Wigley (1991) during the last 140 years.> The
figure shows that the global mean temperature has increased by about 0.6 °C since the begin-

3 For the recent model assessment of the temporal variation of the global mean surface air temperature shown in
Figure 4, see recent review article by Manabe and Stouffer:

Manabe, S. and R.J. Stouffer. ”Climate Variability of a Coupled Ocean-Atmosphere-Land Surface Model:
Implication for the Detection of Global Warming.” Bull. Amer. Meteor: Soc. (1997, in press).
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PREDICTION OF GLOBAL CLIMATE
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Figure 6. Diagram which illustrates the strategy for the projection of future climate change.

ning of the century. We found that, in response to the observed increase of greenhouse gases,
the coupled model generates an increase of global mean surface air temperature which is larger
than observed by the factor of about 1.5. This overestimate of global warming may result from
our neglect of the cooling effect of sulfate aerosols which reflect incoming solar radiation.
Because of fossil fuel combustion, the atmospheric loading of sulfate aerosols has increased
rapidly during the last several decades (Charlson et al., 1990). It is therefore very urgent to
monitor the temperature variation of various thermal forcings, such as those due to the increase
of aerosols, as well as greenhouse gases.

The overestimate of global warming mentioned above may also be attributable to the
excessive sensitivity of the coupled model which we constructed. It is therefore desirable to
evaluate the sensitivity of the model by comparing the simulated and actual changes of climate.
The agreement between these climate changes should enhance our confidence in our ability to
project the future change of climate. .

A comprehensive strategy for the successful validation of a climate model is illustrated
by the box diagram in Figure 6. It involves:

1. reliable, long-term monitoring of climate and its thermal forcings such as changes in the
concentration of greenhouse gases and aerosols in the atmosphere;

2. simulation of observed climate change by a coupled model;

and _

3. comparative assessment of the simulated and observed changes of climate.

The insight gained from this comprehensive effort is indispensable for the reliable projection

of future climate change and successful adaptation to and mitigation of anthropogenic climate

change in the future.

The execution of the comprehensive strategy identified above requires the construction
of supercomputers and the development of artificial satellites, in which the contribution of
Japanese engineers is increasing rapidly. I hope that Japanese scientists will also play an
increasingly important role in modeling and observing the future change of global environ-
ment by using these powerful tools.
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